Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-(2-Pyridyl)pyridinium bis(pyridine-2,6-di-carboxylato- $\kappa^{2} O^{2}, O^{6}$)iron(III) trihydrate

Qi-Hua Zhao,* Mei-Su Zhang and Rui-Bing Fang

Department of Chemistry, Center for Advanced Studies of Medicinal and Organic Chemistry, Yunnan University, Kunming 650091, People's Republic of China

Correspondence e-mail: qhzhao@ynu.edu.cn

Key indicators

Single-crystal X-ray study
$T=289 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.029$
$w R$ factor $=0.089$
Data-to-parameter ratio $=13.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

The title compound, $\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{2}\right)\left[\mathrm{Fe}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{NO}_{4}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$, was prepared from the ligand pyridine-2,6-dicarboxylic acid with $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in the presence of 2,2-bipyridine. The $\mathrm{Fe}^{\text {III }}$ atom is six-coordinate in a distorted octahedral geometry. The compound contains protonated $2,2^{\prime}$-bipyridine and doubly deprotonated pyridine-2,6-dicarboxylate (pydc) units; the protonated $2,2^{\prime}$-bipyridine bridges adjacent $\left[\mathrm{Fe}(\mathrm{pydc})_{2}\right]^{-}$ complex units through hydrogen bonding.

Comment

In the past decade, much attention has been paid to the design and synthesis of self-assembling systems (Seto et al., 1990; Conn \& Reber, 1997; Zafar et al., 2000). The molecular selfassembly organized by non-covalent interactions is an attractive approach in crystal engineering for the synthesis and design of new compounds with potentially useful properties for relevant scientific and technological applications (Lehn, 1995; Ko et al., 2002; Hagrman et al., 1999). The ligand pydc is widely used in coordination chemistry, forming stable complexes with most metal ions by adopting the tridentate coordination mode (Perrin et al., 1979). In the literature, there are also reports on the reaction of pyridine-2,6-dicarboxylate (pydc) with lanthanides and transition metals in the presence of Lewis acids, such as pyridine-2,6-diamine (pyda), 1,10phenanthroline (phen) and creatinine (creat), which led to the ionic complexes $[\mathrm{pydaH}]_{2}\left[\mathrm{La}_{2}(\text { pydc })_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Moghimi et al., 2002), $[\mathrm{pydaH}]_{2}\left[\mathrm{Co}(\mathrm{pydc})_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ (Moghimi et al., 2002), $\left[\mathrm{Zn}(\text { pydc })_{2}\right]\left[\mathrm{Zn}(\text { phen })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 7 \mathrm{H}_{2} \mathrm{O}$ (Moghimi, Sheshmani et al., 2005) and (creatH) $[\mathrm{Zn}($ pydc $)(\mathrm{pydcH})] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Moghimi, Sharif et al., 2005). We selected pydcH_{2} as the proton donor and bipy as the proton acceptor, and successfully prepared a new proton transfer $\mathrm{Fe}^{\mathrm{III}}$ complex, (I).

Compound (I) consists of an anionic complex, $\left[\mathrm{Fe}(\text { pydc })_{2}\right]^{-}$, a cationic counter-ion, (bipyH) ${ }^{+}$, and uncoordinated water (Fig. 1). In each anionic $\left[\mathrm{Fe}(\text { pydc })_{2}\right]^{-}$unit, the $(\text {pydc })^{2-}$ acts as

Received 13 October 2005 Accepted 7 November 2005 Online 10 November 2005

Figure 1
A view of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
a tridentate ligand. The protonated N atom in the cationic bipy counter-ion is N3. The angle $\mathrm{C} 19-\mathrm{N} 3-\mathrm{C} 15$ is $124.01(13)^{\circ}$, which is larger than the value of $\mathrm{C} 20-\mathrm{N} 4-\mathrm{C} 24$ [117.21 (1) $)^{\circ}$. The $\mathrm{Fe}^{\text {III }}$ atom is coordinated by two N and four O atoms of two (pydc) ${ }^{2-}$ units. The $\mathrm{O} 4-\mathrm{Fe} 1-\mathrm{O} 2$ and $\mathrm{O} 6-$ $\mathrm{Fe} 1-\mathrm{O} 8$ angles are 151.77 (5) and 151.63 (4) ${ }^{\circ}$, respectively, which shows that the four carboxylate groups of two (pydc) ${ }^{2-}$ ligands are arranged in an equatorial plane around the $\mathrm{Fe}^{\text {III }}$ atom. The $\mathrm{N} 1-\mathrm{Fe} 1-\mathrm{N} 2$ angle is $177.63(4)^{\circ}$, a small deviation (i.e. 2.37°) from linearity being observed. The dihedral angle between the two pyridine rings of pydc units is $89.68(5)^{\circ}$, which shows that they are almost perpendicular to each other. Selected bond lengths and angles are listed in Table 1. There is an extensive network of hydrogen bonds (Fig. 2) involving bipyH counter-ions and pydc O atoms, uncoordinated water and pydc H atoms and pydc O atoms. The bipy co-ligand bridges adjacent $\left[\mathrm{Fe}(\mathrm{pydc})_{2}\right]^{-}$complex units through extensive hydrogen bonding, resulting in a layered structure for this complex. Hydrogen-bond lengths and angles are listed in Table 2.

Experimental

An $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(1: 1 \mathrm{v} / \mathrm{v})$ solution (5 ml) of bipy $(32.95 \mathrm{mg}$, 0.210 mmol) was added to an $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ solution (15 ml) containing $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(60.4 \mathrm{mg}, 0.223 \mathrm{mmol})$ and $\mathrm{pydcH}_{2}(39.6 \mathrm{mg}$, 0.237 mmol) with continuous stirring for 15 min . The mixed solution was filtered and X-ray quality light-green block-shaped crystals of (I) were grown from the resulting solution by slow evaporation at room temperature (yield 42.3%. m.p. $>563 \mathrm{~K}$). IR $(\mathrm{KBr})\left(\mathrm{cm}^{-1}\right): 3500(w)$, $3140(s), 1670(s), 1600(w), 1580(s), 1520(s), 1446(s), 1420(m), 1330$ (vs), 1210 (m), $1180(\mathrm{vs}), 1070(\mathrm{vs}), 910(\mathrm{vs}), 750(\mathrm{~s}), 720(\mathrm{vs}), 680(\mathrm{vs})$, $450(s)$.

Crystal data

$$
\begin{aligned}
& \left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{2}\right)\left[\mathrm{Fe}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{NO}_{4}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O} \\
& M_{r}=597.30 \\
& \text { Triclinic, } P \overline{1} \overline{1} \\
& a=9.4528(19) \AA \\
& b=10.840(2) \AA \\
& c=13.178(3) \AA \\
& \alpha=104.62(3)^{\circ} \\
& \beta=99.57(3)^{\circ} \\
& \gamma=97.02(3)^{\circ} \\
& V=1269.3(4) \AA^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.563 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
Cell parameters from 1694 reflections
$\theta=2.2-28.2^{\circ}$
$\mu=0.66 \mathrm{~mm}^{-1}$
$T=289$ (2) K
Block, green
$0.19 \times 0.16 \times 0.14 \mathrm{~mm}$

Data collection

Bruker SMART CCD
diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 1998)
$T_{\text {min }}=0.884, T_{\text {max }}=0.913$
15248 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.089$
$S=1.05$
6109 reflections
446 parameters
All H -atom parameters refined

6109 independent reflections
5427 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=28.2^{\circ}$
$h=-12 \rightarrow 12$
$k=-14 \rightarrow 14$
$l=-17 \rightarrow 17$

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0557 P)^{2}\right.
$$

$+0.1599 P]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.003$
$\Delta \rho_{\text {max }}=0.30 \mathrm{e} \mathrm{A}^{-3}$
$\Delta \rho_{\min }=-0.28 \mathrm{e}^{-3}$
Extinction correction: SHELXL97 Extinction coefficient: 0.042 (2)

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Fe} 1-\mathrm{O} 4$	$2.0139(12)$	$\mathrm{Fe} 1-\mathrm{N} 1$	$2.0612(12)$
$\mathrm{Fe} 1-\mathrm{O} 6$	$2.0185(11)$	$\mathrm{C} 15-\mathrm{N} 3$	$1.3499(18)$
$\mathrm{Fe} 1-\mathrm{O} 2$	$2.0209(13)$	$\mathrm{C} 19-\mathrm{N} 3$	$1.331(2)$
$\mathrm{Fe} 1-\mathrm{O} 8$	$2.0243(12)$	$\mathrm{C} 20-\mathrm{N} 4$	$1.334(2)$
$\mathrm{Fe} 1-\mathrm{N} 2$	$2.0553(11)$	$\mathrm{C} 24-\mathrm{N} 4$	$1.340(2)$
$\mathrm{O} 4-\mathrm{Fe} 1-\mathrm{O} 6$	$94.09(5)$	$\mathrm{O} 8-\mathrm{Fe} 1-\mathrm{N} 2$	$75.93(5)$
$\mathrm{O} 4-\mathrm{Fe} 1-\mathrm{O} 2$	$151.76(4)$	$\mathrm{O} 4-\mathrm{Fe} 1-\mathrm{N} 1$	$75.92(6)$
$\mathrm{O} 6-\mathrm{Fe} 1-\mathrm{O} 2$	$93.87(5)$	$\mathrm{O} 6-\mathrm{Fe} 1-\mathrm{N} 1$	$103.12(5)$
$\mathrm{O} 4-\mathrm{Fe} 1-\mathrm{O} 8$	$93.80(5)$	$\mathrm{O} 2-\mathrm{Fe} 1-\mathrm{N} 1$	$75.89(5)$
$\mathrm{O} 6-\mathrm{Fe} 1-\mathrm{O} 8$	$151.63(4)$	$\mathrm{O} 8-\mathrm{Fe} 1-\mathrm{N} 1$	$105.23(5)$
$\mathrm{O} 2-\mathrm{Fe} 1-\mathrm{O} 8$	$91.94(5)$	$\mathrm{N} 2-\mathrm{Fe} 1-\mathrm{N} 1$	$177.64(4)$
$\mathrm{O} 4-\mathrm{Fe} 1-\mathrm{N} 2$	$106.14(5)$	$\mathrm{C} 19-\mathrm{N} 3-\mathrm{H} 10$	$114.9(15)$
$\mathrm{O} 6-\mathrm{Fe} 1-\mathrm{N} 2$	$75.70(5)$	$\mathrm{C} 15-\mathrm{N} 3-\mathrm{H} 10$	$121.0(15)$
$\mathrm{O} 2-\mathrm{Fe} 1-\mathrm{N} 2$	$102.08(5)$	$\mathrm{C} 20-\mathrm{N} 4-\mathrm{C} 24$	$117.24(17)$

Table 2
Hydrogen-bond geometry ($\AA \mathrm{A}^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4-\mathrm{H} 15 \cdots \mathrm{O} 11^{\text {i }}$	0.94 (2)	2.56 (2)	3.457 (3)	159 (2)
$\mathrm{O} 10-\mathrm{H} 6 \cdots \mathrm{O} 3^{\text {ii }}$	0.99 (3)	1.91 (3)	2.880 (2)	167 (3)
C17-H12 ${ }^{\text {O }}$ O5 ${ }^{\text {iii }}$	0.92 (2)	2.32 (2)	3.115 (2)	144 (2)
$\mathrm{N} 3-\mathrm{H} 10 \cdots \mathrm{O} 7$	0.80 (2)	2.04 (2)	2.7246 (17)	143 (2)
$\mathrm{O} 9-\mathrm{H} 5 \cdots \mathrm{O} 11^{\text {iv }}$	0.75 (2)	2.11 (2)	2.823 (3)	161 (4)

Symmetry codes: (i) $x+1, y, z-1$; (ii) $x-1, y, z+1$; (iii) $x-1, y+1, z$; (iv) $x+1, y, z$.

All H atoms were located in a difference Fourier map and refined freely.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

This work is supported by the NNSFC (No. 20361004) and NSF of Yunnan Province (Nos. 2003E0012M, 2004E0008M and 2003RC13).

References

Bruker (1998). SMART, SAINT, SADABS and SHELXTL. Bruker AXS, Inc., Madison, Wisconsin, USA.
Conn, M. M. \& Reber, J. Jr (1997). Chem. Rev. 97, 1647-1668.
Hagrman, P. J., Hagrman, D. \& Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638-2684.
Ko, J. W., Min, K. S. \& Suh, M. P. (2002). Inorg. Chem. 41, 2151-2157.
Lehn, J. M. (1995). Supramolecular Chemistry. Weinheim: VCH.
Moghimi, A., Ranjbar, M., Aghabozorg, H., Jalali, F., Shamsipur, M. \& Chadah, R. K. (2002). Can. J. Chem. 80, 1687-1696.
Moghimi, A., Sharif, M. A. Shokrollahi, A., Shamsipur, M. \& Aghabozorg, H. (2005). Z. Anorg. Allg. Chem. 631, 902-908.

Moghimi, A., Sheshmani, S., Shokrollahi, A., Shamsipur, M., Kickelbick, G. \& Aghabozorg, H. (2005). Z. Anorg. Allg. Chem. 631, 160-169.
Perrin, D. D. (1979). Stability Constants of Metal Ion Complex, Part B, Organic Ligands. Oxford: Pergamon Press.
Seto, C. T. \& Whitesides, G. M. (1990). J. Am. Chem. Soc. 112, 6409-6411.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zafar, A., Geib, S. J., Hamuro, Y., Carr, A. J. \& Hamilton, A. D. (2000). Tetrahedron, 56, 8419-8427.

The crystal packing of (I), showing the hydrogen bonds as dashed lines.

[^0]: © 2005 International Union of Crystallography

